Math 259A Lecture 6 Notes

Daniel Raban

October 9, 2019

1 GNS Construction and Topologies on $\mathcal{B}(H)$

1.1 Every C*-algebra is an operator algebra

Recall the GNS construction: Let M be a C^* algebra, and let φ be a positive functional. We get a Hilbert space H_{φ} with $\langle x, y \rangle_{\varphi} = \varphi(y^*x)$ and a representation $\pi_{\varphi}(x)(\hat{y}) = \widehat{xy}$.

Remark 1.1. Our representation uses left multiplication, but there is no preference. If we take $\langle x, y \rangle = \varphi(xy^*)$, then we could use right multiplication for our representation π .

This construction gives us $\xi_{\varphi} = \hat{1}_M$. This gives $H_{\varphi} = \overline{s\pi_{\varphi}(M)\xi_{\varphi}}$. We call ξ_{φ} a **cyclic** vector for the representation π_{φ} .

Lemma 1.1. If H_i is a Hilbert space for all i and $T_i \in B(H_i)$ with $\sup ||T_i|| < \infty$, then $\bigoplus_i T_i \in \mathcal{B}(H_i)$, where $(\bigoplus_i T_i)(\bigoplus_i \xi_i) = \bigoplus_i T(\xi_i)$.

Theorem 1.1 (GNS). If M is a C^{*}-algebra, there exists an isometric, unital, *-algebra morphism $\pi : M \to \mathcal{B}(H)$, where H is a Hilbert space.

Proof. If $\pi_i : M \to B(H_i)$ are representations for all i, we can define $\pi = \bigoplus_i \pi_i : M \to \mathcal{B}(\bigoplus_i H_i)$ by $\pi(x) = \bigoplus_i \pi_i(x)$. The inner product on $\bigoplus_i H_i$ is $\langle (\xi_i)_i, (\eta_i)_i \rangle = \sum_i \langle \xi_i, \eta_i \rangle_{H_i}$. Injective implies isometric, so it suffices to find a 1 to 1 representation. So it suffices to show that for any $x \neq 0$ in M, there exists $\pi_x : M \to B(H_x)$ such that $\pi_x(x) \neq 0$. By the GNS construction, it suffices to get a positive functional φ on M such that $\|\pi_{\varphi}(x)\hat{1}\| = \varphi(x^*x) \neq 0$.

The subspace M_+ is closed and convex in M_h and does not contain $-x^*x$. By Hahn-Banach, there exists a continuous $\varphi : M_h \to \mathbb{R}$ and an $\alpha \in \mathbb{R}$ such that $\varphi(M_+) < [\alpha, \infty)$ and $\varphi(-x^*x) < \alpha$. Since $0 \in M_+$, $0 \in [\alpha, \infty)$, making $\alpha \leq 0$. If $\alpha > 0$, then $\lambda y \in M_+ \Longrightarrow \varphi(\lambda y) < 0$. This is a contradiction, so $\alpha = 0$. So φ is positive and $\varphi(x^*x) \neq 0$. \Box

Remark 1.2. To get the isometry property, we could have produced a φ such that $\varphi(x^*x) = ||x^*x||$.

1.2 Topologies on $\mathcal{B}(H)$

If H is a Hilbert space, we have multiple choices for norms on $\mathcal{B}(H)$.

Definition 1.1. The operator norm topology is the norm topology given by

$$||T|| = \sup_{\xi \in (H)_1} ||T\xi|| = \sup_{\xi,\eta \in (H)_1} |\langle T\xi,\eta \rangle|.$$

Definition 1.2. The weak operator topology is the topology generated by the seminorms $T \mapsto |\langle T\xi, \eta \rangle|$ for all $\xi, \eta \in H$.

Definition 1.3. The strong operator topology is the topology generated by the seminorms $T \mapsto ||T\xi||$ for all $\xi \in H$.

The WOT is weaker than the SOT, which is weaker than the NT.

Definition 1.4. A von Neumann algebra is a *-algebra $M \subseteq B(H)$ with $1_M = id_M \in M$ which is closed in the weak operator topology.

So every von Neumann algebra is a C^* -algebra.

Definition 1.5. Let X be a Banach space, and let $Y \subseteq X^*$ be a vector subspace. The $\sigma(X, Y)$ topology on X is given by the seminorms $x \mapsto |\varphi(x)|$ for $\varphi \in Y$.

Proposition 1.1. Let X be a Banach space, and let $Y \subseteq X^*$ be a vector subspace.

- 1. A linear functional $\varphi: X \to \mathbb{C}$ is $\sigma(X, Y)$ -continuous if and only if $\varphi \in Y$.
- 2. A linear functional $\varphi : X \to \mathbb{C}$ is $\sigma(X, Y)$ -continuous on $(X)_1$ iff $\varphi \in \overline{Y} \subseteq X^*$ (closure with respect to the norm topology).
- 3. The topologies $\sigma(X, Y)$ and $\sigma(X, \overline{Y})$ coincide on $(X)_1$.
- 4. If $\overline{Y} = Y$, a linear functional φ is $\sigma(X, Y)$ -continuous if and only if it is $\sigma(X, Y)$ continuous on $(X)_1$.

Denote by $B_{\sim} = \operatorname{span}\{\omega_{\xi,\eta} = \langle \xi, \eta \rangle : \xi, \eta \in H\} \subseteq \mathcal{B}^*$, and denote $\mathcal{B}_* = \overline{\mathcal{B}_{\sim}} \subseteq \mathcal{B}^*$.

Remark 1.3. The weak operator topology is the $\sigma(\mathcal{B}, \mathcal{B}_{\sim})$ topology on $\mathcal{B}(H)$.

Remark 1.4. Let $FR \subseteq \mathcal{B}(H)$ be the space of finite rank operators. Then $FR \to \mathcal{B}_{\sim}$ given by $T \mapsto \omega_T$, where $\omega_T(x) = \operatorname{tr}_{\mathcal{B}(H)}(xT)$ is an isomorphism.

Definition 1.6. The ultraweak toplogy on $\mathcal{B}(H)$ is the $\sigma(\mathcal{B}, \mathcal{B}_*)$ topology.

Corollary 1.1. Let $\mathcal{B} = \mathcal{B}(H)$ for a Hilbert space H.

1. \mathcal{B}_{\sim} is the space of weak operator continuous functionals on $\mathcal{B}(H)$.

- 2. \mathcal{B}_* is the space of ultraweak continuous functionals functionals on \mathcal{B}
- 3. $\varphi: B \to \mathbb{C}$ is ultraweak continuous if and only if it is weak operator continuous on $(\mathcal{B})_1$.
- 4. The weak and ultraweak topologies coincide on $(\mathcal{B})_1$.

Theorem 1.2. $\varphi : \mathcal{B} \to \mathbb{C}$ is weak operator continuous if and only if it is it is strong operator continuous.